Co-Occurrence Graphs for Cross-Lingual Word Sense Disambiguation

Miniatura
Icono objeto Co-Occurrence Graphs for Cross-Lingual Word Sense Disambiguation.
Serie: Programa de Doctorado de Sistemas Inteligentes 2013-2014
(09-06-2014) Andrés Duque Fernández | | CanalUNED



Título: Co-Occurrence Graphs for Cross-Lingual Word Sense Disambiguation
Título alternativo / Serie: Serie: Programa de Doctorado de Sistemas Inteligentes 2013-2014
Resumen / Descripción: Supervisor: Dra. L.Araujo Cross-Lingual Word Sense Disambiguation (CLWSD) aims to determine the most suitable translation for a given word from a source language to a target one. This is a particular case of the Word Sense Disambiguation (WSD) problem. CLWSD tries to deal with some of the difficulties of WSD, such as the scarcity of sense inventories and sense tagged corpora, by taking advantage of the shared meaning between parallel texts. Our unsupervised approach comprises the automatic generation of bilingual dictionaries, and a new technique for the construction of a co-occurrence graph used to select the most suitable translations from the dictionary. Different disambiguation techniques that make use of the co-occurrence graph as source of information have been tested, as well as different target languages, being English the source language. The evaluation has been conducted using datasets from tasks of the SemEval 2010 and SemEval 2013 competitions, and our system has been compared with those unsupervised systems participating in the same tasks, achieving significant improvements.
Género: Actos - Curso, Máster, Experto, etc...
Área temática: Matemáticas
Ciencias Experimentales
Ciencia de los ordenadores
Inteligencia artificial
Informática
Ciencias Tecnológicas
E. Técnicos e Ingeniería
Tecnología de los ordenadores
Raiz UNESCO: Matemáticas
Ciencias Tecnológicas
Area de Conocimiento: Ciencias Experimentales
E. Técnicos e Ingeniería
Duración de la grabación: 00:29:00
Autor(es): Andrés Duque Fernández
Fecha: 2014-06-09
Idioma: Español
Licencia: https://descargas.uned.es/publico/pdf/Aviso_Legal_UNED.pdf

Document type: Video_AVIP Document
Collection: Coleccion Multimedia
 
Versions
Version Filter Type
Citation counts: Google Scholar Search Google Scholar
Access Statistics: 12 Abstract Views  -  Detailed Statistics
Created: Sun, 27 Oct 2024, 03:32:33 CET